Inorganic Solar Cells Based on Electrospun ZnO Nanofibrous Networks and Electrodeposited Cu2O

نویسندگان

  • Luming Zhang
  • Huaquan Sun
  • Lai Xie
  • Jinnan Lu
  • Luyong Zhang
  • Sujuan Wu
  • Xingsen Gao
  • Xubing Lu
  • Jinhua Li
  • Jun-Ming Liu
چکیده

The nanostructured ZnO/copper oxide (Cu2O) photovoltaic devices based on electrospun ZnO nanofibrous network and electrodeposited Cu2O layer have been fabricated. The effects of the pH value of electrodeposition solution and the Cu2O layer thickness on the photovoltaic performances have been investigated. It is revealed that the pH value influences the morphology and structure of the Cu2O layer and thus the device performances. The Cu2O layer with an appropriate thickness benefits to charge transfer and light absorption. The device prepared at the optimal conditions shows the lowest recombination rate and exhibits a power conversion efficiency of ~0.77 %.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of TiO2 Nanofiber Density on Organic-Inorganic Based Hybrid Solar Cells (RESEARCH NOTE)

Abstract In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels ...

متن کامل

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells.

Cu2O-ZnO nanowire solar cells have the advantages of light weight and high stability while possessing a large active material interface for potentially high power conversion efficiencies. In particular, electrochemically fabricated devices have attracted increasing attention due to their low-cost and simple fabrication process. However, most of them are "partially" electrochemically fabricated ...

متن کامل

Microstructures and Photovoltaic Properties of Zn(Al)O/Cu2O-Based Solar Cells Prepared by Spin-Coating and Electrodeposition

Copper oxide (Cu2O)-based heterojunction solar cells were fabricated by spin-coating and electrodeposition methods, and photovoltaic properties and microstructures were investigated. Zinc oxide (ZnO) and Cu2O were used as nand p-type semiconductors, respectively, to fabricate photovoltaic devices based on In-doped tin oxide/ZnO/Cu2O/Au heterojunction structures. Short-circuit current and fill f...

متن کامل

Improved Heterojunction Quality in Cu2O-based Solar Cells Through the Optimization of Atmospheric Pressure Spatial Atomic Layer Deposited Zn1-xMgxO

Atmospheric pressure spatial atomic layer deposition (AP-SALD) was used to deposit n-type ZnO and Zn1-xMgxO thin films onto p-type thermally oxidized Cu2O substrates outside vacuum at low temperature. The performance of photovoltaic devices featuring atmospherically fabricated ZnO/Cu2O heterojunction was dependent on the conditions of AP-SALD film deposition, namely, the substrate temperature a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015